Difference between revisions of "Quantum Computing Threat"

From MgmtWiki
Jump to: navigation, search
(Solutions)
(Solutions)
Line 11: Line 11:
  
 
==Solutions==
 
==Solutions==
* [https://www.nextgov.com/cybersecurity/2022/07/nist-identifies-four-quantum-resistant-encryption-algorithms/368954/ NIST Announces First Four Quantum-Resistant Cryptographic Algorithms] US agency reveals the first group of winners from its six-year competition. (2022-07-05)<blockquote>The four algorithms contribute to NIST’s ongoing post-quantum cryptographic standard, and will be finalized in roughly two years. They are available on NIST’s website, and are referred to as Crystals-Kyber, Crystals-Dilithium, Falcon and SPHINCS+.</blockquote>
+
* [https://www.nextgov.com/cybersecurity/2022/07/nist-identifies-four-quantum-resistant-encryption-algorithms/368954/ NIST Announces First Four Quantum-Resistant Cryptographic Algorithms] US agency reveals the first group of winners from its six-year competition. (2022-07-05)<blockquote>The four algorithms contribute to NIST’s ongoing post-quantum cryptographic standard, and will be finalized in roughly two years. They are available on [https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization NIST’s website], and are referred to as Crystals-Kyber, Crystals-Dilithium, Falcon and SPHINCS+.</blockquote>
 
* [https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf;jsessionid=8C2589A87F0171C51C02A6C9229D0344.internet081?__blob=publicationFile&v=4 Quantum-safe cryptography fundamentals, current developments and recommendations] Federal Office for Information Security  
 
* [https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf;jsessionid=8C2589A87F0171C51C02A6C9229D0344.internet081?__blob=publicationFile&v=4 Quantum-safe cryptography fundamentals, current developments and recommendations] Federal Office for Information Security  
 
* [https://www.nist.gov/blogs/taking-measure/post-quantum-encryption-qa-nists-matt-scholl Post-Quantum Encryption: A Q&A With NIST’s Matt Scholl] 2021-10-27
 
* [https://www.nist.gov/blogs/taking-measure/post-quantum-encryption-qa-nists-matt-scholl Post-Quantum Encryption: A Q&A With NIST’s Matt Scholl] 2021-10-27

Revision as of 11:28, 6 July 2022

Full Title or Meme

Successful Quantum Computing creates an existential threat to existing cryptographic algorithms since quantum computing algorithms exist to crack traditionally intractable problems like factoring the multiplication of two large primes used in RSA.

Context

Public key cryptography relies on certain mathematical problems that are very hard to solve, such as factoring large numbers that are the product of large prime numbers or finding the discrete logarithm of a random elliptic curve element with respect to a publicly known base point. If you know the private key components, you can sign the document or decrypt the data. If you don't have the private key and cannot solve the math, you cannot sign the document or decrypt the data.

Problems

  • Many systems exist which depend on existing public key technology. Some of these are embedded in hardware that cannot be changed once deployed.
  • Existing signatures or encrypted files will continue to need to be processed for many years to come. Certificate keys have a life time of up to 25 years.
  • The approval process for new cryptographic algorithms takes many years of standardization and test to be sure that the work effort to brake them is sufficiently high.

Solutions

Public Key Cryptography has many benefits over Secret Key Cryptography, the effort to create new algorithm to preserve the current PK protocols is underway now.

Using Post-Quantum Cryptographic Algorithms

References